with the value of 15.89 reported by Macalpine and Sayce.²

Summary

Solubility relationships in the ternary system

(NH₄)₂SeO₄-CuSeO₄-H₂O at 25° have been determined. The double salt hydrate (NH₄)₂SeO₄ CuSeO₄·6H₂O is the stable phase over almost the entire range of concentrations.

PULLMAN, WASH.

RECEIVED FEBRUARY 24, 1945

[CONTRIBUTION FROM THE CHEMICAL LABORATORY OF HARVARD UNIVERSITY]

The Silicon Chlorobromides

BY HERBERT H. ANDERSON

Recent studies of the silicon chlorobromides^{1,2} have increased our knowledge of these three compounds considerably; however, the information available on melting points and densities is quite scant, while boiling points are fairly well known.

A mixture of the silicon chlorobromides was prepared by heating equal volumes of SiCl₄ and SiBr₄ over a period of seventy hours at 140° in a sealed tube. Repeated fractional distillation of the three chlorobromides provided pure samples boiling at the following uncorrected temperatures: SiCl₄Br at 78.8–79.0°, SiCl₂Br₂ at 103.8–104.1°, and SiClBr₃ at 127.0–127.3°. Portions of each pure compound were used at once in measuring densities, melting points and boiling points.

Densities, Melting Points and Boiling Points

Procedures.—Densities were measured in a calibrated 2-ml. bulb with capillary inlet bearing a reference mark; densities obtained should be accurate to one or two parts per thousand. A suitable value for carbon tetrachloride was obtained. Melting points were obtained as follows: the bulb of a calibrated toluene thermometer was immersed in about 3 ml. of pure chlorobromide in a small tube, which was itself immersed in an alcoholbath contained in a Dewar flask. The temperature of the alcohol-bath was allowed to change slowly, with agitation of both sample and thermometer; melting points were in good accord with freezing Boiling points were measured to 0.2°, followed by immediate observation of the boiling point of carbon tetrachloride or water in identical Results of this investigation are summarized in Table I below; previous values are given when available.

Table I
SILICON TETRACHLORIDE TO SILICON TETRABROMIDE

B. p Obs.	o., °C. Prev.	М. р. °С,	Density#4	Mol. vol., ml.
	57.57	−70 *	1.4694	115.7
80.3	802.5	-62 = 1	1.826	117.4
104.4	1042.5	-45.5 = 1	2,172	119.2
128.0	126-128***	-20.8 ± 1^{b}	2.4970	121.6
•••	158.4	+5:	2.812*	123.7
	Obs. 80.3 104.4 128.0	57.57° 80.3 80°°° 104.4 104°°° 128.0 126-128°°°	Obs. Prev. M. p. °C 57.57° -70° 80.3 80° -62 ± 1 104.4 104° -62 ± 1 128.0 126-128° -20.8 ± 1	Obs. Prev. M. p. °C. Density**4 57.57° -70° 1.469°. 80.3 80°.° -62 ± 1 1.826 104.4 104°.° -45.5 ± 1 2.172 128.0 126-128°.° -20.8 ± 1° 2.497°

<sup>From value 1.483 at 20°, Mellor, Vol. VI, p. 962.
Besson⁵ gives -39°, on a probably impure compound.
Reynolds' value, in Mellor, of 2.432 would give a molar volume greater than that of SiBr₄.</sup>

Discussion.—Previously, there was some doubt as to the correct values on SiClBr₃. This has been settled. The chief physical properties of the silicon chlorobromides are now known. In examining the liquid ranges in Table I above, we find the value is constant at $149.0 \pm 0.6^{\circ}$ in the last three members, SiCl₂Br₂, SiClBr₃, and SiBr₄. This regularity has led to a study of liquid ranges of other mixed halides; this is now complete and should be published at a later date. Other work is in progress, including isolation of Si(OCH₂)₃SCN boiling at about 170.5° .

Summary

An investigation of the chief physical properties of the silicon chlorobromides has yielded the following new values: SiCl₂Br, m. p. -62°, d²⁵, 1.826; SiCl₂Br₂, m. p. -45.5°, d 2.172; SiClBr₃, m. p. -20.8°, d 2.497. Boiling points of the chlorobromides have been checked also.

CAMBRIDGE, MASSACHUSETTS

RECEIVED DECEMBER 5, 1944

^{(1) (}a) Schumb and Anderson, THIS JOURNAL, 59, 651 (1937);(b) Forbes and Anderson, ibid., 66, 931 (1944).

⁽²⁾ Mellor, "Comprehensive Treatise on Inorganic and Theoretical Chemistry," Vol. VI, pp. 962, 978, 980-981.

^{(3) &}quot;International Critical Tables."

⁽⁴⁾ Schumb and Young, THIS JOURNAL, 52, 1464 (1930).

⁽⁵⁾ Besson, Compt. rend., 112, 531, 788, 1447 (1891).